
MHC Class II epitope predictive algorithms

Introduction

Major histocompatibility complex (MHC) molecules play

an essential role in host–pathogen interactions determin-

ing the outcome of many host immune responses. Only a

small fraction of the possible peptides that can be gener-

ated from proteins of pathogenic organisms actually gen-

erate an immune response. MHC class II molecules

present peptides derived from proteins taken up from the

extracellular environment. They stimulate cellular and

humoral immunity against pathogenic micro-organisms

through the actions of helper T lymphocytes. For a pep-

tide to stimulate a helper T lymphocyte response, it must

bind MHC class II in the endocytic organelles.1

Protein uptake by professional antigen-presenting cells

through endocytosis or phagocytosis leads to formation

of endosomes, which become increasingly acidic as they

progress and eventually fuse with lysosomes containing

MHC class II molecules (see Fig. 1). These vesicles con-

tain aspartic and cysteine proteases, which are activated

as the acidity increases and thereby degrade the protein

into peptides. The protease activity can generate and

destroy potential MHC class II epitopes. The peptides

susceptible to destructive processing might survive if they

can be loaded to MHC class II molecules early.2 The

MHC class II molecules themselves are resistant to prote-

olysis2; therefore the core peptide is completely protected

while the rest of the peptide can be trimmed by endopep-
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Summary

Major histocompatibility complex class II (MHC-II) molecules sample

peptides from the extracellular space, allowing the immune system to

detect the presence of foreign microbes from this compartment. To be

able to predict the immune response to given pathogens, a number of

methods have been developed to predict peptide–MHC binding. However,

few methods other than the pioneering TEPITOPE/ProPred method have

been developed for MHC-II. Despite recent progress in method develop-

ment, the predictive performance for MHC-II remains significantly lower

than what can be obtained for MHC-I. One reason for this is that the

MHC-II molecule is open at both ends allowing binding of peptides

extending out of the groove. The binding core of MHC-II-bound peptides

is therefore not known a priori and the binding motif is hence not readily

discernible. Recent progress has been obtained by including the flanking

residues in the predictions. All attempts to make ab initio predictions

based on protein structure have failed to reach predictive performances

similar to those that can be obtained by data-driven methods. Thousands

of different MHC-II alleles exist in humans. Recently developed pan-spe-

cific methods have been able to make reasonably accurate predictions for

alleles that were not included in the training data. These methods can be

used to define supertypes (clusters) of MHC-II alleles where alleles within

each supertype have similar binding specificities. Furthermore, the pan-

specific methods have been used to make a graphical atlas such as the

MHCMotifviewer, which allows for visual comparison of specificities of

different alleles.
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tidases hydrolysing internal amide bonds and exopro-

teases hydrolysing one or two amino acids from either

the N- or C-terminal.3,4 A type II membrane protein,

called the invariant chain (Ii), is associated with newly

synthesized MHC class II protein in the endoplasmic

reticulum. The Ii stabilizes MHC molecules and directs

transportation to early endosomes. Proteolytic cleavage of

Ii is important for the correct peptide loading of MHC

class II. Part of Ii, called CLIP (class II associated invari-

ant peptide), occupies the peptide-binding groove of the

MHC class II molecule. Interaction of MHC class II with

an MHC class II-like molecule (called human leucocyte

antigen HLA-DM in humans) catalyses the release of

CLIP, allowing other peptides to bind before the MHC

molecule’s migration to the plasma membrane.5

In the MHC class I antigen presentation pathway, the

antigen degradation is predominantly caused by a single

protease called the proteasome. Two distinctive forms of

this protease exist in humans. The constitutive protea-

some, which is expressed in all ‘healthy’ cells and the

immuno-proteasome, which is expressed primarily in cells

stimulated by interferon-c. Both versions of the protea-

some have a well-defined specificity, and predictive algo-

rithms have been developed to characterize these. In

contrast to this, the activities (and specificities) of the

proteases in the MHC class II presentation pathway are

poorly characterized.

The core binding motif of both MHC I and MHC II is

approximately nine amino acids long.6 Whereas the pep-

tide-binding groove in the MHC I molecule tends to be

closed in both ends and MHC I rarely binds peptides

much longer than nine amino acids, the ends of the

MHC II binding groove are open (see Fig. 2). Conse-

quently, MHC class II can accommodate much longer

peptides – possibly even whole proteins.1,7 This difference

has important implications for the development of algo-

rithms predicting peptide binding to MHC class II. The

specificity of an MHC I molecule can be derived by

extracting the motif from a set of 9-mer peptides known

to bind to a given allele. In contrast, a set of peptides

binding MHC II will typically be of different lengths and

therefore need to be correctly aligned before the nine

amino acid core-binding motif can be identified.

In humans, the MHC class II locus encodes for genes

for an a- and a b-subunit of the MHC class II proteins

HLA-DR, HLA-DQ and HLA-DP. The genes encoding

the MHC class I and class II are highly polymorphic (i.e.

many alleles exist at each gene locus). In the current

release of the IMGT/HLA database, the number of regis-

tered DRa, DRb, DQa, DQb and DPa, DPb proteins is 2,

637, 26, 77, 16 and 118, respectively.8 This can potentially

generate more than 4000 combinations of HLA class II a
and b subunits. This polymorphism complicates the task

of deriving MHC prediction algorithms. These problems

have been addressed by developing methods showing

which MHC alleles have similar binding specificities,

making it possible to find promiscuous peptides that bind

to a series of MHC variants. Furthermore, pan-specific

prediction algorithms have been developed that allow for

binding predictions to be made even for alleles for which

Antigen
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Figure 1. The major histocompatibility complex (MHC) class II

antigen presentation pathway. Specialized antigen-presenting cells

ingest exogenous antigens into endosomes by endocytosis or phago-

cytosis. The endosomes fuse with MHC class II containing lyso-

somes. The antigens (and MHC class II invariant chain) are

degraded into peptides by proteases, and the release of the CLIP

peptide allows the MHC class II molecule to bind antigen peptides

before migration to the plasma membrane.

Figure 2. Protein crystal structure of major histocompatibility com-

plex (MHC) class II molecule (HLA-DRB1*0101) in complex with

peptide (PDB id: 1AQD). The MHC a-chain is shown in dark-blue,

and the b-chain in light blue. The peptide (GSDWRFLRGYHQYA)

is shown in red/pink, with the peptide-binding core (WRFLRGYHQ)

in red, and the peptide-flanking amino acids in pink.
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no binding data exist. Moreover, this polymorphism has

large implications for vaccine design. The peptide-binding

specificity of the allelic molecules (variants) is often very

different. Every child inherits a set of a and b subunits

for each of the three proteins from its parents, giving a

potential set of 6–12 HLA class II molecules depending

on the degree of heterozygosity. Different individuals will

therefore typically react to different sets of peptides from

a given pathogen. If a vaccine needs to contain a unique

peptide for each of these molecules, it will need to com-

prise many different peptides.

MHC class II data, databases and data quality

Many databases exist hosting data describing the binding

specificities for MHC molecules. The two main sources of

data are the SYFPEITHI database of MHC ligands and

T-cell epitopes9, and the immune epitope database

(IEDB).10 As of November 2009, the SYFPEITHI database

contained 1623 HLA class II ligands/epitopes covering 47

different HLA-DR, -DP and -DQ alleles. For HLA class I,

the corresponding numbers are 3866 ligands/epitopes cov-

ering 119 HLA-A, -B and -C molecules. Also, in Novem-

ber 2009, the IEDB contained 15 556 HLA class II

peptide-binding measurements covering 31 full-typed

HLA-DR, and a small set of fully typed HLA-DQ alleles.

There are other smaller databases hosting MHC epitope-

related data such as MHCBN,11 and AntiJen.12 Data

describing the binding specificity are therefore many folds

scarcer for MHC class II molecules than for MHC class I.

Historically, MHC class II molecules were the first for

which peptide binding could be demonstrated. In 1982,

Werdelin demonstrated that chemically related antigens

competed for antigen presentation and suggested that this

was the result of competition for MHC;13 in 1983,

Shimonkevitz et al. 14demonstrated that peptides could

replace protein antigens; and in 1984, Watts et al.
15demonstrated that peptide and purified MHC molecules

could replace antigen-presenting cells. However, it was

not until 1985 that Babbitt et al.,16 using equilibrium

dialysis, succeeded in generating biochemical evidence of

a specific and saturable binding between a fluoresceinated

hen egg lysozyme peptide, HEL46–61, and purified mouse

MHC class II molecule, I-Ak. Noting the extreme stability

of peptide–MHC class II complexes, Buus et al. 17in 1986

used gel filtration chromatography, radiolabelled peptides

and purified MHC class II molecules to generate an easy,

robust and sensitive assay for peptide–MHC class II inter-

action. Since then, many different working principles for

how to measure peptide–MHC class II interactions have

been suggested (and it would be beyond the scope of this

review to give a detailed account of all these alternative

methods). Whereas the original Babbitt and Buus meth-

ods relied upon purified MHC class II molecules, many

alternative methods have attempted to generate whole-cell

(bound to cell surfaces cell lysates etc.) binding assays

(for example ref. 18). The current IEDB release (Decem-

ber 2009) details almost 36 000 reported peptide–MHC

class II interactions. About 90% of these data points ema-

nate from studies using purified MHC class II molecules.

The remaining 10% of the IEDB MHC class II data

points have been derived from cell-based assays. Although

this is only a minor part of the available data it is impor-

tant to keep in mind as such whole-cell assays are at best

semi-quantitative.19 One reason for this may be the fre-

quent lack of proteolytic control, which may skew the

peptide dose–response by orders of magnitude and con-

ceal binding.20 Another important factor that may affect

the reliability of the quantitative aspects of the IEDB data

points is the historical era in which they were obtained.

In the early days of measuring peptide–MHC class II

interactions biochemically, a peptide binding with an

affinity in the micromolar range was considered to be a

strong binder, whereas today a peptide would have to

bind in the nanomolar range to be considered a strong

binder – and a peptide that binds with a micromolar

affinity today would be considered borderline to being a

non-binder. Clearly, the many improvements in MHC

class II preparation, in peptide labelling, and in assay

technology (e.g. Justesen et al.21) have increased the sensi-

tivity of peptide–MHC class II assays and allowed the

proper determination of nanomolar binding affinities.

The IEDB incorporates all available data irrespective of

the source of the data, and it is therefore bound to con-

tain some data that may appear highly divergent. This

should be kept in mind when using the IEDB data to

develop predicting methods. Filtering the data to remove

older and whole-cell-based data might yield more consis-

tent data, and generate better predictors.

Predictive methods for MHC class II binding

Many different methods have been applied to predict

peptide–MHC binding including simple binding motifs,

quantitative matrices, hidden Markov models and artifi-

cial neural networks. For class I, these alignment-free

methods can readily be applied because the binding motif

is well characterized and most natural peptides that bind

MHC class I are of close to equal length.9,22–25 However,

the situation for MHC class II binding is quite different

because of the great variability in the length of natural

MHC-binding peptides. This length variability makes

alignment a crucial and integrated part of estimating the

MHC-binding motif and predicting peptide binding.

Quantitative matrices estimated from experimentally

derived position-specific binding profiles have given rea-

sonable performance in prediction of MHC class II bind-

ing.26–29 However, such matrices are very costly to derive

and more importantly they lack the flexibility of data-dri-

ven machine-learning methods to be refined in an iterative
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manner when more data become available. During the

last decade, large efforts have therefore been invested in

developing data-driven prediction methods for MHC class

II. The early method by Brusic et al.30 applied a hybrid

method for predicting peptide–MHC class II binding

using an evolutionary algorithm to define the binding

core and subsequently applied artificial neural networks

to classify peptides as binding/non-binding. The work by

Nielsen et al.31 extended the Gibbs sampler approach by

Lawrence et al.32 to search for binding motifs in MHC

class II ligand data. Later many other (often highly exo-

tic) algorithms were proposed for MHC class II binding

prediction, including ant colony33, hidden Markov mod-

els34, support vector machines35–37, and other motif

search algorithms9,38–43 as well as consensus methods

integrating the output from two or more, different pre-

diction methods.44,45 However, most of these methods

have been trained and evaluated on very limited data sets

covering only a single or a few different MHC class II

alleles. Further, the majority of the methods are trained

on binary classified peptide data (binders versus non-

binders). This type of qualitative prediction method is

well suited to classify data, but does not allow a direct

prediction of the peptide–MHC binding affinity.

A limited number of methods are publicly available for

quantitative MHC class II prediction, namely the ARB38,

SVRMHC35, MHCpred41 and NetMHCII.46,47 Other

methods such as SVMHC48 and Propred49 are implemen-

tations of the TEPITOPE method,29 and provide predic-

tion scores that are not in any direct way related to the

peptide-binding affinity.

The binding of a peptide to a given MHC molecule is

predominantly determined by the amino acids present in

the peptide-binding core. However, peptide residues flank-

ing the binding core (so-called peptide flanking residues,

PFR) do also to some degree affect the binding affinity of a

peptide.50,51 Several striking examples of the stabilizing

effect of PFR can be found in the IEDB, for example the

peptide RFYKTLRAEQASQ binds to the HLA-DRB1*0401

molecule with a 50% inhibition concentration (IC50) value

of 5�67 nM whereas the truncated form YKTLRAEQA binds

with an IC50 value of 33 100 nM. Most published methods

for MHC class II binding prediction, however, focus on

identifying the peptide-binding core only, ignoring the

effects on the binding affinity of PFRs. The only methods

that attempt for a direct incorporation of the effect of pep-

tide flanking residues and peptide length are the algorithms

developed by Chang et al.,40 Nielsen et al.46 and Nielsen

and Lund.47 Of these, the NN-align algorithm47 is the only

method that explicitly incorporates PFR and peptide length

in the training, and in the work by Nielsen et al., it was

demonstrated that the additional information provided by

the PFR leads to significantly improved predictions.

All the methods described above are allele-specific and

are therefore limited by whether sufficient experimental

peptide-binding data are available for each allele in ques-

tion. A minimum number of 200 peptides with character-

ized binding affinity are needed to derive an accurate

description of the binding motif for MHC class II alleles

(unpublished results). In the IEDB, only 14 HLA-DR, and

two HLA-DQ alleles meet this criterion, leaving the vast

majority of the more than 4000 different HLA class II

molecules uncovered.

A seemingly promising approach that does not require

binding data is to use three-dimensional (3D) structures

of peptide–MHC complexes. Different MHC alleles have

high sequence homology, and all solved MHC structures

have a highly conserved fold, which opens the possibility

to use homology modelling for those MHC alleles for

which no 3D structure has been solved explicitly. Several

approaches have been published that predict peptide

binding to MHC molecules using known 3D struc-

tures.52–55 Threading-based approaches have been used to

align peptides to known peptide–MHC structures and

binders are selected using statistical pairwise potentials.56–

58 Davies et al.59 used molecular dynamic and simulated

annealing to sample the conformational space and predict

binding of peptides to MHC class I molecules. Structure

information has also been coupled with experimental data

to predict peptide–MHC binding via quantitative struc-

ture–affinity relationship method.60 In a recent study,61

several structure-based approaches for predicting peptide

binding to MHC class II molecules have been compared.

Their prediction performance was evaluated on a large

dataset of 3882 peptide-binding affinities to HLA-

DRB1*0101. The implementation and evaluation of the

different approaches led to overall comparable results: the

different methods all made significantly better than ran-

dom discriminations of binders from non-binders, but

failed to compete with the accuracy of data-driven meth-

ods and, more importantly, failed to reach the prediction

quality necessary for practical applications.

For MHC class I, several groups have proposed so-

called pan-specific methods.62–67 All of these methods

aim at integrating structural information with experimen-

tal peptide-binding data allowing for the generalization of

binding predictions to MHC molecules characterized with

few or even no peptide-binding data. The NetMHCpan

method65,66 for instance is constructed in a way that takes

both the peptide sequence and the MHC contact environ-

ment into account. The method leverages information

from multiple MHC molecules in the prediction of the

binding affinity of a peptide to a given query MHC mole-

cule, and hence allows for both improved predictions for

MHC molecules characterized by few binding data as well

as for reasonably accurate predictions for previously

uncharacterized MHC molecules. For MHC class II, the

pan-specific methods are still in their infancy. Only two

methods have been published claiming pan-specificity for

MHC class II binding, the NetMHCIIpan method
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(Nielsen et al. 68) and the Shift-invariant adaptive thread-

ing method by Zaitlen et al.69 However, the performance

of both these method is hampered by the limited cover-

age of the HLA class II specificity space, and the applica-

bility of the methods is in most cases limited to HLA-DR.

Table 1 gives an overview of publicly available methods

for prediction of peptide binding to MHC class II mole-

cules.

MHC class II benchmark studies

Several studies have compared the predictive performance

of MHC class II prediction methods. In the study by

Wang et al.45 nine publicly available MHC class II predic-

tion methods were compared using a large set of quanti-

tative MHC class II binding data covering 14 HLA-DR

and two mouse MHC alleles. The study by Lin et al.70

covered 21 prediction servers and was based on 103 pep-

tides with measured binding to seven common HLA-DR

molecules. In both benchmark studies, the pioneer MHC–

peptide-binding prediction algorithm TEPITOPE27,29

came out as one of the best performing methods. Of the

many data-driven methods, only the NetMHCII46 (Wang

study), and NetMHCIIpan68 and Multipred (SVM)62 (Lin

study) performed consistently better than TEPITOPE.

A major conclusion from these benchmark studies is

that the state-of-the-art MHC class II prediction methods

do not match the prediction capabilities of MHC class I

predictors. In terms of AUC values (area under the recei-

ver operator curve) state-of-the-art MHC class I predic-

tion methods will often achieve predictive performance

values in the range 0�85–0�95 depending on the training

and evaluation data size and composition. For MHC class

II, the corresponding performance values are significantly

lower, often in the range 0�75–0�85 even for MHC mole-

cules where many thousand peptide-binding data are

available for training the prediction method.

Visualization of MHC binding motifs

A powerful way of visualizing the receptor-binding motif

is by using so-called sequence logos. Sequence logos are a

graphical representation of aligned multiple amino (or

nucleic) acid sequences. Sequence logos were originally

developed by Tom Schneider and Mike Stephens.71 For

each position, the frequency of all 20 amino acids is dis-

played as a stack of letters. The total height of the stack

represents the sequence conservation and the individual

height of the symbols relates to the relative frequency of

the corresponding amino acid at that position. The higher

the stack at a given position, the more conserved the

position is. The MHC Motif Viewer is a website which

collects such sequence logo representations of the binding

motif for HLA-DR molecules (as well as a large set of

MHC class I molecules).72,73 The binding specificity for

each HLA-DR molecule is predicted using the NetMHCII-

pan peptide–MHC binding prediction methods, and is

visualized in a format that allows for a comprehensive

interpretation of binding motif anchor positions and

amino acid preferences. In the logo plots used in the

MHCMotifViewer website, the amino acids are coloured

according to their physicochemical properties:

1 Acidic [DE]: red

2 Basic [HKR]: blue

3 Hydrophobic [ACFILMPVW]: black

4 Neutral [GNQSTY]: green

Two examples of HLA-DR binding motifs are shown in

Fig. 3. The difference in binding specificity of the MHC

molecules is apparent from these logo plots. Both mole-

cules have a preference for hydrophobic amino acids at

P1. The HLA-DR1*0301 molecule will bind peptides with

acidic amino acids at P4, and basic amino acids at P6

and P9. The HLA-DRB1*1501 molecule, on the other

hand, prefers hydrophobic and neutral amino acids at the

Table 1. Publicly available methods for prediction of peptide–major histocompatibility complex (MHC) class II binding

Method Link Reference

SVMHC www-bs.informatik.uni-tuebingen.de/Services/SVMHC 48

NetMHCII http://www.cbs.dtu.dk/services/NetMHCII/ 46, 47

NetMHCIIpan http://www.cbs.dtu.dk/services/NetMHCIIpan/ 68

Tepitope/Propred http://www.imtech.res.in/raghava/propred/ 29, 49

SYFPEITHI http://www.syfpeithi.de/ 9

IEDB_ARB tools.immuneepitope.org/analyze/html/mhc_II_binding.html 38

IEDB_Comblib tools.immuneepitope.org/analyze/html/mhc_II_binding.html

IEDB_SMM-align tools.immuneepitope.org/analyze/html/mhc_II_binding.html 46

IEDB_Cons tools.immuneepitope.org/analyze/html/mhc_II_binding.html 45

Rankpep bio.dfci.harvard.edu/Tools/rankpep.html 98

HLA-DR4pred http://www.imtech.res.in/raghava/hladr4pred/index.html 99

EpiToolKit http://www.epitoolkit.org/ 100
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P4 and P6 anchors. The large binding promiscuity of the

HLA-DR molecule is clear from the logo representation.

At each anchor position 1, 4, (6) and 9 multiple amino

acids are observed with close to equal preference for

binding. This is in contrast to MHC class I where most

anchor positions are characterized by a preference for one

or two different amino acids. For more details on

sequence logos and how they are constructed see ref. 73.

MHC specificity clustering

As stated in the Introduction, each MHC molecule has a

potentially unique binding specificity, and if a vaccine

needs to contain a unique peptide for each of these mole-

cules it will need to comprise several hundred peptides.

Moreover, the task of deriving MHC prediction algo-

rithms would be daunting. Fortunately, many MHC

alleles have very similar binding specificities, and it is

therefore often possible to find peptides that bind pro-

miscuously to several MHC variants. This has important

implications both for vaccine design and development of

MHC binding prediction algorithms. As described above,

this binding promiscuity has allowed for the development

of pan-specific MHC binding prediction algorithms, and

equally importantly, it limits the number of epitopes

needed in order to have broad MHC allelic coverage in a

vaccine design.

Most work on MHC specificity clustering has been per-

formed on the MHC class I molecules.74–79 The general

idea behind these clustering approaches is to identify

groups (often called supertypes) so that all MHC mole-

cules within one supertype will bind a similar set of pep-

tides. For MHC class II, limited work has been made on

specificity clustering because of the lack of data character-

izing the specificity of the MHC class II molecules. Lund

et al.76 used the experimentally derived specificity scoring

matrices of the TEPITOPE method29 to define nine HLA-

DR supertypes, and the work by Nielsen et al.68 refined

this study using the pan-specific HLA-DR prediction

method to define 12 HLA-DR supertypes. No study with

broad allelic coverage has been made defining specificity

clusters for HLA-DQ and HLA-DP.

Recent studies have challenged the MHC supertype

concept, suggesting that supertypes often provide an over-

simplification of the MHC specificity space80–83 These

studies all demonstrate that the peptide-binding overlap

between MHC molecules within a supertype is often far

from 100%, and that peptides can bind promiscuously to

MHC molecules belonging to different supertypes. How-

ever, and perhaps more importantly, the study by Perez

et al.80 demonstrates that the observed promiscuity is pre-

dictable using advanced bioinformatical methods for pan-

specific HLA-peptide binding. Another, and potentially

more rational, approach to achieve broad allelic coverage

in a vaccine design would therefore be to select a limited

set of peptides restricted to as many alleles as possible.

This should be within reach with pan-specific approaches

that can make predictions for all alleles where the protein

sequence is known.

Identification of CD4 epitopes and MHC class II
ligands

An important question is how good the best available

MHC class II prediction algorithms are in terms of pre-

dicting immunogenicity. The real test of MHC class II–

peptide-binding prediction algorithms comes when trying

to predict antigen presentation by MHC class II and

CD4+ T-cell immunogenicity. It might well be that a

method can be very accurate in predicting binding IC50

values, but poor when correlating prediction values to

peptide immunogenicity.

Two types of studies are especially relevant in the con-

text of antigen presentation and CD4+ immunogenicity.

In the first type of study, antigen presentation is investi-

gated. Peptides that are observed in complex with MHC

on the cell surface (observed MHC ligands) must have

passed through the antigen presentation pathway. One

can ask how large a fraction of the peptide pool in the

source protein needs to be tested to identify the observed

2
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Figure 3. Sequence logo representation of the binding motif for two

HLA-DR molecules. The Kullback–Leibler (KL) sequence logo is

taken from the MHC Motif Viewer website.73 Left: HLA-DRB1*0301,

Right: HLA-DRB1*1501. The KL information content is plotted

along the nine-mer binding core (solid blue line). Amino acids with

positive influence on the binding are plotted on the positive y-axis,

and amino acids with a negative influence on binding are plotted on

the negative y-axis. The height of each amino acid is given by their

relative contribution to the binding specificity (for details see ref.

73). The primary anchor positions (P1, P4, P6 and P9) show clear

and distinct amino acid preferences. At P1, both molecules prefer

hydrophobic amino acids. HLA-DRB1*0301 has a preference for

aspartic acid at P4 whereas at P6 and P9 basic amino acids are pre-

ferred. HLA-DRB1*1501, on the other hand, prefers hydrophobic

and neutral amino acids at the P4 and P6 anchors.
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MHC ligand. If a prediction method is perfect, the ligand

should be ranked as the first, and therefore be identifiable

with a false-positive rate of 0, and if a method is random,

the false-positive rate would be 50%. Several papers have

employed this type of benchmark approach correlating

peptide-binding score to likelihood of antigen presenta-

tion.46,47,68,84–87 For MHC class II, the general observation

in these studies is that the prediction methods perform

significantly better than random, ranking the experimen-

tally known ligands within top 10–15%. A typical protein

contains 300 amino acids, and in terms of experimental

work, these values translate into an effort of testing

approximately 35 peptides to identify the ‘true’ ligand. In

comparison, similar experiments for MHC class I predic-

tion algorithms tend to rank the ligands within the top

1–2%, reducing the experimental effort to testing two to

five peptides to identify the ‘true’ ligand.65,66,87,88

The second type of experimental validation of MHC

class II binding prediction algorithms relates to CD4 T-

cell immunogenicity. Even small pathogens will contain

many thousands of peptides, and often large numbers of

strains exist. This, combined with the large MHC speci-

ficity diversity in the human population, makes direct

experimental immunology, where overlapping peptides

covering the genome in question are experimentally

investigated for their immunogenicity, an extremely

costly process. Many studies have therefore applied in sil-

ico screening methods to the identification of T-cell epi-

topes.89–95 The majority of these studies, including even

the recent ones, uses the TEPITOPE prediction algorithm

for the in silico screening. This is surprising because

many benchmark studies have shown that state-of-the-art

data-driven methods significantly outperform the TEPI-

TOPE method when it comes to identification of MHC

class II ligands (see above). Nonetheless the general con-

clusion from these studies is that in silico screening is a

useful tool for identification of CD4 T epitopes. In par-

ticular, the prediction algorithms have proven successful

in identifying CD4 epitopes promiscuously restricted to

multiple HLA-DR alleles. However, the relatively large

false-positive rate in the studies further underlines the

need for a continued search for improved prediction

methods.

Discussion

During the last decade the accuracy and MHC coverage

of data-driven peptide-binding methods have increased

significantly. We have reviewed the quality of the state-of-

the-art MHC class II peptide-binding prediction algo-

rithms, and shown how such algorithms can provide a

powerful tool to guide the rational search for CD4 T-cell

epitopes. It is clear, however, that the quality of peptide-

binding algorithms is significantly lower for MHC class II

compared with MHC class I. One might speculate why

this difference in accuracy persists? Many MHC class II

alleles have been characterized by thousands of quantita-

tive peptide-binding measurements, and stating that the

difference in quality between class I and class II is caused

by lack of data seems inadequate. In fact, we can show

that limited improvement in prediction accuracy is

observed once the number of peptide data surpasses 1000

(unpublished results). It is therefore natural to ask why

we do not achieve a higher performance? It is clear that

prediction of peptide binding to MHC class II is a much

more complicated problem than peptide binding to MHC

class I both because of the alignment problem imposed

by the broad length distribution of MHC class II binders,

and as a result of the vast peptide-binding promiscuity

imposed by the relatively weak binding specificity of most

MHC class II molecules. On the other hand, the peptide-

binding event is highly reproducible. Repeated experi-

ments measuring the binding affinity of a peptide to an

MHC molecule under similar experimental conditions

give similar results, indicating that the binding affinity

should be predictable.

Several factors could explain this apparent discrepancy

between the amount of data and the quality of the predic-

tion methods. One important factor is the data quality.

As mentioned earlier, data for MHC class II are generated

using a diverse set of experimental assays by a large num-

ber of different groups. The data in the IEDB for MHC

class I was primarily generated since 2006 by two experi-

mental assays. More than 99% of the quantitative MHC

class I binding data are generated by the two comparable

assays developed in the laboratories of A. Sette and S.

Buus. More than 95% of the class I data has been gener-

ated since 2005, and < 2% before 2001. For MHC class II

the situation is different. Here, about 80% of the quanti-

tative data are produced using one single assay type,

whereas 20 groups using more than five different assay

types produce the remaining 20%. Less than 80% of the

data were produced after 2006, and more than 15% of

the data were produced before 2001. Most binding data

describing the specificity of MHC molecules are equilib-

rium binding affinity values. Binding affinity might not

be the only relevant feature for the characterization of

epitopes. Binding stability might be equally relevant

because the avidity of the MHC peptide complex to bind

T cells clearly depends both on the equilibrium binding

constant and the stability of the complex,96 and comple-

menting the MHC binding data with peptide stability

measurements may lead to improved epitope predictions.

As a result of the open ends of the MHC class II binding

cleft, peptides might bind in multiple registers.97 Several

conflicting studies have shown both positive and negative

effects of including such multiple binding registers into

the prediction of MHC class II binding, and no consensus

has been reached in the field as to how big the effect of

multiple binding registers would be for an accurate
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description of the binding specificity.40,70 Finally, for nat-

urally processed MHC ligands and CD4 epitopes, factors

other than peptide–MHC binding can influence the pep-

tide immunogenicity, including susceptibility to proteo-

lytic activity in the endosome/lysosome and peptide/

antigen abundance in the antigen-presenting cell.

At this point, it is not clear to what extent improved

data quality and development of accurate bioinformati-

cal algorithms characterizing these other factors will

improve the predictive performance for MHC class II

epitope predictors. Recent large-scale epitope discovery

projects have focused primarily on MHC class I epi-

topes, and large amounts of high-quality peptide-bind-

ing data have been generated since 2005 characterizing

more than 60 different HLA-A and HLA-B alleles lead-

ing to great improvements in the prediction methods

now available for MHC class I peptide binding. One

can hope that MHC class II will gain more focus in

future epitope discovery projects, hence allowing genera-

tion of high-quality MHC class II data and prediction

methods.
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